Incremental Nonlinear Proximal Support Vector Machine
نویسندگان
چکیده
Proximal SVM (PSVM), which is a variation of standard SVM, leads to an extremely faster and simpler algorithm for generating a linear or nonlinear classifier than classical SVM. An efficient incremental method for linear PSVM classifier has been introduced, but it can’t apply to nonlinear PSVM and incremental technique is the base of online learning and large data set training. In this paper we focus on the online learning problem. We develop an incremental learning method for a new nonlinear PSVM classifier, utilizing which we can realize online learning of nonlinear PSVM classifier efficiently. Mathematical analysis and experimental results indicate that these methods can reduce computation time greatly while still hold similar accuracy.
منابع مشابه
Evaluation of the Efficiency of Linear and Nonlinear Models in Predicting Monthly Rainfall (Case Study: Hamedan Province)
In this research, we used the support vector machine (SVM), support vector machine combine with wavelet transform (W-SVM), ARMAX and ARIMA models to predict the monthly values of precipitation. The study considers monthly time series data for precipitation stations located in Hamedan province during a 25-year period (1998-2016). The 25-year simulation period was divided into 17 years for t...
متن کاملIncremental Reduced Support Vector Machines
The reduced support vector machine (RSVM) has been proposed to avoid the computational difficulties in generating a nonlinear support vector machine classifier for a massive dataset. RSVM selects a small random subset from the entire dataset with a user pre-specified size m̄ to generate a reduced kernel (rectangular) matrix. This reduced kernel will replace the fully dense square kernel matrix u...
متن کاملIncremental and Decremental Proximal Support Vector Classification using Decay Coefficients
This paper presents an efficient approach for supporting decremental learning for incremental proximal support vector machines (SVM). The presented decremental algorithm based on decay coefficients is compared with an existing window-based decremental algorithm, and is shown to perform at a similar level in accuracy, but providing significantly better computational performance.
متن کاملIncremental Support Vector Machine Classification
Using a recently introduced proximal support vector machine classifier [4], a very fast and simple incremental support vector machine (SVM) classifier is proposed which is capable of modifying an existing linear classifier by both retiring old data and adding new data. A very important feature of the proposed single-pass algorithm , which allows it to handle massive datasets, is that huge block...
متن کاملSupport vector regression with random output variable and probabilistic constraints
Support Vector Regression (SVR) solves regression problems based on the concept of Support Vector Machine (SVM). In this paper, a new model of SVR with probabilistic constraints is proposed that any of output data and bias are considered the random variables with uniform probability functions. Using the new proposed method, the optimal hyperplane regression can be obtained by solving a quadrati...
متن کامل